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With the help of path-integral quantization and Fradkin's approach, we obtain a 
new representation in the Schr'odinger picture of the multiplier scalar-vector fields 
and the ground-state functional. We show that the model is equivalent to free 
scalar fields with the same mass. 

Recently, Fradkin (1993) formulated a relationship between the path- 
integral partition function and the absolute value squared of the ground-state 
wave functional in the Schr6dinger representation. This method has been 
used to calculate the ground-state wave functional of a number of models, 
e.g., the Thirring-Luttinger model, coset models, and the Sutherland model 
(Fradldn and Moreno, 1993). In particular, it was shown that the wave 
functionals of the liquid ground states of fractional quantum Hall systems, 
in the thermodynamic limit, are universal at long distances and they have a 
generalized Laughlin form (Lopez and Fradkin, 1992). In previous work 
(Feng and Qiu, 1995) we obtained the correct ground-state wave functional 
for the Maxwell-Chern-Simons model using this method, and showed that 
Fradkin's approach can apply to singular systems without special difficulty 
and that the Maxwell-Chern-Simons model does not have fractional statis- 
tics. In this paper we quantize the multiplier scalar-vector fields model pro- 
posed by Li (1991) by path-integral quantization. We find that the model is 
equivalent to a model of free scalar fields with equal masses. 
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The  Lagrangian of  the model  considered is 

= - • - ~  + �89 - mA~a~q ~ + �89 ~ (1) 

where  F~.  = aCA. - a.Ar and q~ is called the multiplier  scalar field. The 
canonical  m o m e n t a  are given by definit ion as 

a~ a~ 
" r r " - - - - F  "~ ~ -  - ~ - m A  ~ (2) oA~ a<0 

The Poisson brackets are 

{ ~r~(x), a . (y)  } l x 0 = y  0 : - -  ~ ( X  - -  y) (3) 

{'rr(x), q~(y) },x0=yO = - ~(x - y) (4) 

The  canonical  Hamil tonian is 

~ c  = "trM~ + ~r<o - 

_ _ l  i ITr2 •  - -  ~ ' f f  7ri '1- -1- 4 -  q - -  

- �89 i - �89 + mAiaiq~ + Ao(mqr - Oi'rr i) (5) 

(i = 1, 2 . . . . .  d; the spacet ime is assumed of  dimension D = d + 1). F rom 
equation (2), we  have the pr imary  constraint  

~1 = "tr~ ~ 0 (6) 

so the total Hamil tonian is 

Hr = I ddx ~ r  = I ddx (~c  + k(x)C~,) (7) 

where  k(x) is the Lagrangian multiplier. F rom 

{%~, Hr} ~- 0 (8) 

we have  a secondary constraint 

~2 = m ~  - ai'rr i ~ 0 (9) 

It can be checked that there exist no further constraints and the constraints 
(~ 1, (~2 are first class 

{~l ,  c62} ~" 0 (10) 

So there should be two gauge-f ixing conditions (Dirac, 1964). In the 
(D = d + D-dimensional  case, the physical  phase space is o f  d imension 
2(D + l) - 4 = 2d. We choose the first gauge condition as the famil iar  
Cou lomb  condition 
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['~1 : OiAi ~-" 0 (11) 
The consistent condition fl~ ~- 0 and the definition of 7r i suggest that the 
second gauge condition could be chosen as 

~'~2 = Oi 'lTi - -  Oi OiAO ~-" 0 

Since Det{D~, ~j } = const, the source-free partition functional is 

Z[0] = J ~w~ ~A~ ~w ~tO g(~l)g(~E)g(lll)g(l~2) 

(12) 

(13) 

Because of g(~2), g(ll0, the last term and the term AiOito in ~c can be 
neglected. Since 

g(O2) = const.g(Ao - V-2OiTr i) (14) 

~r ~ and Ao can be integrated first, 

Z[0] = I ~ "  ~Ai ~ r  ~to g(%2)g(l)l) 

l i l  rr21FiJFij+l 1 )}  + -~ ~r ~ri - ~ - -~ ~ AiA i + ~ oitooito (15) 

After integrating ~r, we have 

Z[0] = J ~ r  i ~Ai ~to g(lIl) 

1FiJFq + l A i A i +  1 ] }  - -~ ~ oitooito (16) 

where K U = ~i j  + (llm2)OgOj �9 Integrating ~i gives 

Z[O]=f~Ai~to~( l~l )  e x p { i f d n x [ - l ( A i - l ~ i ~ P )  

( 10js 1 1 i ] }  • A ij Aj - m 2 AiAi + 2 0 tO OitO (17) 



44 Feng and Zhu 

where 

AiJ = ,qij m 2 -- V 2 '  V2 = __oioi 

Because of ~(1"11), the first term in the exponential is 

- 2  A, - --m Oi(p Aij -- Oj(p = --'~ AiAi + - ~  Oi(pAijoj• (18) 

Since 

1 ~i~pAij~j~-~- 1 - - V  2 
2m 2 ~ ~ m2 _ V2 ~ (19) 

we may define a new scalar field ~b which is a new representation of the 
original field q~, 

~.m -V2 ,1, = v2  �9 (20) 

So 

10,~pAijOfip + 1 1 2m 2 ~ Oiq~Oiq) _~ ~ [+2 + dp(V2 _ m2)d#] (21) 

Hence 

1 AirA~ - 1 

+ ~m:AiTa + 2 + - (22) 

where Ar is the transverse part of A: & = (~i  + OiO/V2) AL We can rewrite 
Z[O] as 

Z[O] = ~Air  ~00 exp - 2  i dDx [Ar(O~O~ + mE)Ar 

~b(O~Ov~ + m2)+]'~ (23) + 
J 
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Incorporating external sources J~ J, 0iJ  ~ : 0, we have 

Z[Jr, J] = f ~air ~d~ exp{i f dOx [-2 Ar(O~O~ + m2)Ar 

- 1  dp(0~0~2 -t-m2)~b +J~-Air+ J~b]} (24) 

The absolute value squared of the ground-state wave functional is (Fradkin, 
1993; Feng and Qiu, 1995) 

where 

I XItgs[AT, +] 12 

= f ~Jr(x) ~J(x) 

 (ex I-iI  x x'+ (25) 

Z, o = Z[Jr, J]ljr(x)=Jr(x)~(xO-to)J(x)=s(x)~(x~ 

{ll = exp --~ i ddx day [J~.(x)Giy(x - y)J~(y) + J(x)G(x - y)J(y)]} 

i f e ik(x-y) 
G(x - y) = (2~r) a ddk 2co(k-----)' 

and co(k) = x / ~  + m 2. So 

Gu(x - y) = -rloG(x - y) 

[Xllgs[Ar, dp]lZ=Nexp{-2f ddx (~bx/-V2 + m2~b 

+ Arx/-V 2 + m2Ar)} 

It can be easily checked that 

Xltgs[A ~ qb] = d~ r e x p { - f  ddx (~b~/-W + m2d~ 

+ Arx/-V 2 + m2Ar)} 

(26) 

(27) 

(28) 

(29) 
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It can be seen from equation (24) that the model is equivalent to d free 
scalar fields with the same mass m. In the case d = 2, we may define a 
scalar field associated with At ,  

A i r  = r  - -  

The model is then reduced to a model of  free fields ~b', d~ with equal masses m. 
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